Устойчивость упругих систем - определение. Что такое Устойчивость упругих систем
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Устойчивость упругих систем - определение

Устойчивость (математич.); Асимптотическая устойчивость; Устойчивость динамических систем; Устойчивость движения; Неустойчивость (динамические системы); Неустойчивость; Устойчивость по Ляпунову
Найдено результатов: 97
Устойчивость упругих систем      

свойство упругих систем возвращаться к состоянию равновесия после малых отклонений их из этого состояния. Понятие У. у. с. тесно связано с общим понятием устойчивости движения (См. Устойчивость движения) или равновесия. Устойчивость является необходимым условием для любой инженерной конструкции. Потеря устойчивости может явиться причиной разрушения как отдельного элемента конструкции, так и сооружения в целом. Потеря устойчивости при определённых видах нагружения характерна для различных гибких элементов, входящих в состав конструкции, - стержней (продольный изгиб), пластинок и оболочек (выпучивание).

До 2-й половины 19 в. единственным критерием прочности инженерных сооружений принималась величина действующих напряжений, т. е. считалось, что если напряжения не превосходят некоторого предела, зависящего от механических свойств материала, то сооружению не грозит опасность. Это было справедливо, пока строительными материалами служили камень, дерево, чугун и т.д., для которых, благодаря низким допускаемым напряжениям, случаи потери устойчивости были весьма редки. С появлением конструкций, в состав которых входят длинные сжатые стержни, последовал ряд аварий, заставивших пересмотреть укоренившуюся точку зрения. Оказалось, что они произошли вследствие недостаточной устойчивости сжатых стержней. Так, например, в результате потери устойчивости под воздействием порывов ветра в 1940 рухнул Такомский висячий мост (США).

Физическим признаком устойчивости или неустойчивости формы равновесия служит поведение нагруженной упругой системы при её отклонении от рассматриваемого положения равновесия на некоторую малую величину. Если система, отклоненная от положения равновесия, возвращается в первоначальное положение после устранения причины, вызвавшей отклонение, то равновесие устойчиво. Если отклонение не исчезает, а продолжает расти, то равновесие неустойчиво. Нагрузка, при которой устойчивое равновесие переходит в неустойчивое, наз. критической нагрузкой, а состояние системы - критическим состоянием. Установление критических состояний и составляет основной предмет теории У. у. с.

Для прямого стержня (См. Стержень), сжатого вдоль оси силой Р, значение критической силы Ркр определяется формулой Эйлера Ркр = π2EI/l)2, где Е - модуль упругости материала, I - момент инерции поперечного сечения, l - длина стержня, μ - коэффициент, зависящий от условий закрепления концов. В случае двух шарнирных опор, одна из которых является неподвижной, а вторая - подвижной, μ = 1.

Для прямоугольной Пластинки, сжатой в одном направлении, критическое напряжение равно δкр = Kπ2D/b2h, где D = Eh3/12(1 - ν)2 - т. н. цилиндрическая жёсткость, b и h - ширина и толщина пластинки, ν - Пуассона коэффициент материала, К - коэффициент, зависящий от условий закрепления краев и от отношения между размерами пластинки.

В случае круговой цилиндрической оболочки (См. Оболочка), сжатой вдоль оси, можно установить т. н. верхнее критическое напряжение σкр. в. = ; h и R - толщина и радиус кривизны срединной поверхности оболочки. Несколько иную структуру имеют формулы для верхнгео критического напряжения при действии поперечного давления или скручивающих пар. Потеря устойчивости реальных оболочек во многих случаях происходит при меньшей нагрузке вследствие значительного влияния различных факторов, особенно начальных неправильностей формы.

Для сложных конструкций точное решение затруднено, поэтому прибегают к различным приближённым методам. Для многих из них пользуются энергетическим критерием устойчивости, в котором рассматривается характер изменения потенциальной энергии П системы при малом отклонении её от положения равновесия (для устойчивого равновесия П = min). При рассмотрении неконсервативных систем, например стержня, сжатого силой, наклон которой меняется в процессе выпучивания (следящая сила), применяется динамический критерий, заключающийся в определении малых колебаний нагруженной системы. Важное значение имеет исследование т. н. закритического поведения упругих систем. Оно требует решения нелинейных краевых задач. Для стержня закритическая деформация оказывается возможной лишь при его очень большой гибкости. Напротив, для тонких пластинок вполне возможны значительные прогибы в закритической стадии - при условии, что края пластинки подкреплены жёсткими стержнями (стрингерами). Для оболочек закритическая деформация связана обычно с прощёлкиванием и потерей несущей способности конструкции.

Приведённые выше данные относятся к случаю, когда потеря У. у. с. имеет место в пределах упругости материала. Для исследования У. у. с. за пределами упругости пользуются пластичности теорией (См. Пластичности теория). Если нагрузка, приводящая к потере устойчивости, динамическая, необходимо учитывать силы инерции элементов конструкции, отвечающие характерным перемещениям. Чем более быстрым является нагружение, тем более выраженной оказывается форма выпучивания. При ударных нагрузках исследуются волновые процессы передачи усилий в конструкции. Если материал конструкции находится в состоянии ползучести, для определения критических параметров пользуются соотношениями теории ползучести (см. Ползучесть).

Лит.: Болотин В. В., Динамическая устойчивость упругих систем, М., 1956; его же, Неконсервативные задачи теории упругой устойчивости, М., 1961; Вольмир А. С., Устойчивость деформируемых систем, 2 изд.. М.. 1967: Ржаницын А. Р., Устойчивость равновесия упругих систем, М., 1955: Смирнов А. Ф., Устойчивость и колебания сооружений, М., 1958; Тимошенко С. П., Устойчивость упругих систем, пер. с англ., 2 изд., М., 1955; его же, Устойчивость стержней, пластин и оболочек, М., 1971; Вольмир А. С., Оболочки в потоке жидкости и газа. Задачи аэроупругости, М., 1976.

А. С. Вольмир.

Устойчивость (динамические системы)         
Устойчивость — свойство решения дифференциального уравнения притягивать к себе другие решения при условии достаточной близости их начальных данных. В зависимости от характера притяжения выделяются различные виды устойчивости. Устойчивость является предметом изучения таких дисциплин, как теория устойчивости и теория динамических систем.
УСТОЙЧИВОСТЬ ДВИЖЕНИЯ         
способность движущейся под действием приложенных сил механической системы почти не отклоняться от этого движения при каких-нибудь незначительных случайных воздействиях (легкие толчки, слабые порывы ветра и т. п.). Движение, не обладающее этой способностью, является неустойчивым. Условия, при которых имеет место устойчивость движения, называется критерием устойчивости. Устойчивостью движения должны обладать автомобиль, самолет, снаряд, ракета и другие используемые в технике движущиеся объекты.
неустойчивость         
ж.
Отвлеч. сущ. по знач. прил.: неустойчивый.
Асимптотическая устойчивость         

см. Устойчивость системы автоматического управления.

Устойчивость движения         

одно из важнейших понятий механики. Движение любой механической системы, например машины, гироскопического устройства (См. Гироскопические устройства), самолёта, снаряда и т.п., зависит от действующих сил и т. н. начальных условий, т. е. от положений и скоростей точек системы в момент начала движения. Зная эти силы и начальные условия, можно теоретически рассчитать, как будет двигаться система. Движение, соответствующее этому расчёту, называется невозмущённым. Но поскольку все измерения производятся с той или иной степенью точности, то на практике истинные значения начальных условий будут обычно несколько отличаться от расчётных. Кроме того, механическая система может во время движения подвергнуться незначительным случайным воздействиям, не учтенным при расчёте, что тоже эквивалентно изменению начальных условий. Возникающие по разным причинам отклонения начальных условий от их расчётных значений, называются начальными возмущениями, а движение, которое система будет совершать при наличии этих возмущений, - возмущённым движением.

Влияние начальных возмущений на характеристики движения системы (траектории её точек, их скорости и т.п.) может быть двояким. Если при достаточно малых начальных возмущениях каких-нибудь из характеристик во всё последующее время мало отличается от того значения, которое она должна иметь в невозмущённом движении, то движение системы по отношению к этой характеристике называется устойчивым. Если же при сколь угодно малых, но не равных нулю начальных возмущениях данная характеристика со временем будет всё более и более отличаться от значения, которое она должна иметь в невозмущённом движении, то движение системы по отношению к этой характеристике называется неустойчивым. Эти определения соответствуют определению У. д. по А. М. Ляпунову. Условия, при которых движение механической системы является устойчивым, называются критериями устойчивости.

В качестве примера рассмотрим Гироскоп (волчок), ось которого вертикальна и который вращается вокруг этой оси с угловой скоростью (рис.). Теоретически ось гироскопа должна оставаться вертикальной при любом значении ω, но фактически, когда ω меньше некоторой величины ωкр, ось при любом малом возмущении (толчке) будет всё более отклоняться от вертикали. Если же ω больше ωкр, то малые возмущения практически направление оси не изменят. Следовательно, при ω < ωкр гироскоп по отношению к направлению его оси неустойчив, а при ω> ωкр устойчив. Последнее неравенство и является критерием устойчивости, при этом ωкр = , где Р вес гироскопа, а расстояние от точки опоры О до центра тяжести С, Ix и Iy - моменты инерции гироскопа относительно осей х и у соответственно.

Теория У. д. имеет важное практическое значение для многих областей техники, т.к. У. д. должны обладать различного рода двигатели, автомобили, самолёты, ракеты, гироскопические приборы, системы автоматического регулирования и др. В небесной механике проблема У. д. возникает при изучении вопроса о длительности сохранения структуры солнечной системы, двойных звёзд и др.

Лит.: Ляпунов А. М., Общая задача об устойчивости движения, М. - Л., 1950; Четаев Н. Г., Устойчивость движения, 2 изд., М., 1955; Дубошин Г. Н., Основы теории устойчивости движения, [М.], 1952; Красовский Н. Н., Некоторые задачи теории устойчивости движения, М., 1959; Малкин И. Г., Теория устойчивости движения, М. - Л., 1952; Меркин Д. Р., Введение в теорию устойчивости движения, М., 1971 (лит.).

К ст. Устойчивость движения.

неустойчивость         
НЕУСТ'ОЙЧИВОСТЬ, неустойчивости, мн. нет, ·жен. (·книж. ). ·отвлеч. сущ. к неустойчивый
.
Вычислительная устойчивость         
  • f}}*.
  • Смешанная устойчивость комбинирует понятия прямой и обратной ошибки.
В вычислительной математике вычислительная устойчивость является обычно желательным свойством численных алгоритмов.
теория систем         
теория, описывающая общие свойства систем (структуру, способы взаимодействия подсистем, информационные связи и др.) независимо от их физического содержания; одна из основных теорий кибернетики, в т. ч. биологической и медицинской.
Общая теория систем         
Общая теория систем (теория систем) — научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов.

Википедия

Устойчивость (динамические системы)

Устойчивость — свойство решения дифференциального уравнения притягивать к себе другие решения при условии достаточной близости их начальных данных. В зависимости от характера притяжения выделяются различные виды устойчивости. Устойчивость является предметом изучения таких дисциплин, как теория устойчивости и теория динамических систем.